A Bayesian Approach to Service Selection for Secondary Users in Cognitive Radio Networks
نویسنده
چکیده
In cognitive radio networks where secondary users (SUs) use the time-frequency gaps of primary users' (PUs) licensed spectrum opportunistically, the experienced throughput of SUs depend not only on the traffic load of the PUs but also on the PUs' service type. Each service has its own pattern of channel usage, and if the SUs know the dominant pattern of primary channel usage, then they can make a better decision on choosing which service is better to be used at a specific time to get the best advantage of the primary channel, in terms of higher achievable throughput. However, it is difficult to inform directly SUs of PUs' dominant used services in each area, for practical reasons. This paper proposes a learning mechanism embedded in SUs to sense the primary channel for a specific length of time. This algorithm recommends the SUs upon sensing a free primary channel, to choose the best service in order to get the best performance, in terms of maximum achieved throughput and the minimum experienced delay. The proposed learning mechanism is based on a Bayesian approach that can predict the performance of a requested service for a given SU. Simulation results show that this service selection method outperforms the blind opportunistic SU service selection, significantly. Keywords—Cognitive Radio; Service Selection; Bayesian
منابع مشابه
On Network Selection for Secondary Users in Cognitive Radio Networks
In this paper, we present a network flow based approach for network selection for secondary users in cognitive radio networks. Most approaches in the current literature on cognitive radio do not consider network selection. We present a network flow framework for network selection. We show that our approach can enable re-assignment of networks to secondary users and also re-assignment of channel...
متن کاملSpectrum Assignment in Cognitive Radio Networks Using Fuzzy Logic Empowered Ants
The prevalent communications networks suffer from lack of spectrum and spectrum inefficiency. This has motivated researchers to develop cognitive radio (CR) as a smart and dynamic radio access promised solution. A major challenge to this new technology is how to make fair assignment of available spectrum to unlicensed users, particularly for smart grids communication. This paper introduces an i...
متن کاملSpectrum Sensing Data Falsification Attack in Cognitive Radio Networks: An Analytical Model for Evaluation and Mitigation of Performance Degradation
Cognitive Radio (CR) networks enable dynamic spectrum access and can significantly improve spectral efficiency. Cooperative Spectrum Sensing (CSS) exploits the spatial diversity between CR users to increase sensing accuracy. However, in a realistic scenario, the trustworthy of CSS is vulnerable to Spectrum Sensing Data Falsification (SSDF) attack. In an SSDF attack, some malicious CR users deli...
متن کاملSecure Collaborative Spectrum Sensing in the Presence of Primary User Emulation Attack in Cognitive Radio Networks
Collaborative Spectrum Sensing (CSS) is an effective approach to improve the detection performance in Cognitive Radio (CR) networks. Inherent characteristics of the CR have imposed some additional security threats to the networks. One of the common threats is Primary User Emulation Attack (PUEA). In PUEA, some malicious users try to imitate primary signal characteristics and defraud the CR user...
متن کاملOptimized Spectrum Selection through Instantaneous Channels Characteristics Evaluation in Cognitive Radio
The key idea to spectrum decision in Cognitive Radio Networks (CRN) is the selection of the best available spectrum band to satisfy Secondary Users (SUs) Quality of Service (QoS) requirements, without interfering with transmission of the licensed or Primary Users (PU). This challenging task requires a very good cooperation between users with different demands for the best use of spectrum channe...
متن کامل